

# Устройства серии



(M18-1, M18-2, M18-3, M18-4)

Руководство по эксплуатации

ЖАЯК.420000.001-00 РЭ

Листов 47

Данное руководство по эксплуатации является официальной документацией ООО НПФ

«КРУГ»

© ООО НПФ "КРУГ", 2013

При перепечатке ссылка на ООО НПФ «КРУГ» обязательна.

ООО НПФ "КРУГ" является владельцем авторских прав на устройства серии **DevLink®** в

целом, на оригинальные технические решения, примененные в данном изделии, а также на

встроенное системное программное обеспечение.

Изготовитель оставляет за собой право вносить изменения в конструкцию и программное

обеспечение, улучшающие характеристики изделия.

В случае возникновения вопросов, связанных с применением, а также с заявками на

приобретение устройств серии DevLink® обращаться по адресу:

НАУЧНО-ПРОИЗВОДСТВЕННАЯ ФИРМА «КРУГ»

РОССИЯ, 440028, г. Пенза, ул. Титова 1

Тел. +7 (8412) 49-97-75, 55-64-97, 49-94-14, 48-34-80,

Факс: +7 (8412) 55-64-96.

E-mail: krug@krug2000.ru

http://www.krug2000.ru, www.DevLink.ru

Вы можете связаться со службой технической поддержки НПФ «КРУГ» support@krug2000.ru



# **Ш** СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                                | Стр.<br><b>5</b> |
|---------------------------------------------------------|------------------|
| ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ                            |                  |
| 1. НАЗНАЧЕНИЕ ИЗДЕЛИЯ                                   |                  |
| 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ                           |                  |
| 2.1 Габаритные размеры                                  |                  |
| 2.2 Характеристики вычислительного ядра:                |                  |
| 2.3 Параметры электропитания изделия:                   |                  |
| 2.4 Характеристики интерфейсов:                         |                  |
| 2.5 Устойчивость к воздействию внешних факторов         | 99               |
| 2.6 Устойчивость к механическим воздействиям            |                  |
| 2.7 Электромагнитная совместимость                      |                  |
| 2.8 Безопасность                                        |                  |
| 2.9 Надежность                                          | 9                |
| 3. СОСТАВ ИЗДЕЛИЯ                                       | 10               |
| 4. УСТРОЙСТВО И РАБОТА                                  |                  |
| 4.1 Общие сведения                                      |                  |
| 4.1.1 Назначение разъемов на плате DevLink®             | 14               |
| 4.1.1.1 Разъем питания «POWER»                          |                  |
| 4.1.1.2 Разъемы локальной сети «LAN1»                   |                  |
| 4.1.1.3 Слоты SIM-1 и SIM-2 для установки двух SIM-карт | · 17             |
| 4.1.1.4 Разъемы интерфейса «USB»                        | 17               |
| 4.1.1.5 Разьем Mini-USB                                 | 17               |
| 4.1.1.6 MicroSD слот                                    | 18               |
| 4.1.1.7 Порт «1-Wire»                                   |                  |
| 4.1.1.8 Разъем «ANTENNA»                                | 19               |
| 4.1.1.9 Разъем «RS-485/RS-422»                          | 19               |
| 4.1.1.10 Разъем «I/O»                                   | 21               |
| 4.1.1.11 Разъем интерфейса «RS-232»                     | 22               |
| 4.1.1.12 Кнопка «SET»                                   | 23               |
| 4.1.1.13 Кнопка «MODE»                                  | 23               |
| 4.1.1.14 Элементы индикации «INIT», «STATUS», «A», «В»  | 23               |
| 4.1.2 Назначение разъемов на дополнительной плате N     | №123             |
| 4.1.2.1 Разъем "DIO" на дополнительной плате            | 23               |
| 4.1.2.2 Разъем "AIN" на дополнительной плате            | 24               |

# 🔲 СОДЕРЖАНИЕ

| 4.1.2.3 Работа с платой                          | Стр.<br>25                 |
|--------------------------------------------------|----------------------------|
| 4.2 Режимы работы                                | 30                         |
| 5. ВЗАИМОДЕЙСТВИЕ С ДРУГИМИ ИЗДЕЛИЯМИ            | 31                         |
| 6. СРЕДСТВА ИЗМЕРЕНИЯ И ПРИНАДЛЕЖНОСТИ           | 32                         |
| 7. МАРКИРОВКА И ПЛОМБИРОВАНИЕ                    | 32                         |
| 8. УПАКОВКА                                      | 32                         |
| 9. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ                   | 33                         |
| 9.1 Эксплуатационные ограничения                 | 33                         |
| 9.2 Подготовка к использованию                   | 33                         |
| 9.3 Распаковка                                   | 33                         |
| 9.4 Объем и последовательность внешнего осмотра  | изделия33                  |
| 9.5 Монтаж                                       | 33                         |
| 9.6 Подготовка к работе                          |                            |
| 9.7 Демонтаж                                     | 34                         |
| 9.8 Использование изделия                        | 35                         |
| 9.9 Меры безопасности                            | 35                         |
| 10. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ                     | 36                         |
| 10.1 Техническое обслуживание                    | 36                         |
| 10.2 Меры безопасности                           |                            |
| 10.3 Техническое освидетельствование             | 38                         |
| 11. ТЕКУЩИЙ РЕМОНТ                               | 39                         |
| 12.ХРАНЕНИЕ                                      |                            |
| 13. ТРАНСПОРТИРОВАНИЕ                            | 39                         |
| 14. УТИЛИЗАЦИЯ                                   | 39                         |
| 15. ГАРАНТИИ ИЗГОТОВИТЕЛЯ                        | 40                         |
| ПРИЛОЖЕНИЕ 1 (информационное). Схемы подключени  | ия DevLink <sup>®</sup> 41 |
| ПРИЛОЖЕНИЕ 2 (справочное). Датчики с интерфейсом | n OneWire® 44              |
| ПРИЛОЖЕНИЕ 3 (рекомендуемое). Схема упаковки     | 46                         |
| ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ                       | 47                         |



# ВВЕДЕНИЕ

Настоящее руководство по эксплуатации (РЭ) содержит общие сведения о конструкции, принципе действия и характеристиках  $\mathbf{DevLink}^{\mathbb{B}}$ , а также указания, необходимые для правильной и безопасной эксплуатации изделия, оценки его технического состояния и утилизации.

Эксплуатация **DevLink®** должна проводиться лицами, ознакомленными с принципом работы, конструкцией изделия и настоящим РЭ.

В ходе эксплуатации **DevLink**® персоналу надлежит исполнять рекомендации, изложенные в «Правилах техники безопасности при эксплуатации электроустановок потребителей».

#### ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

**АСУ ТП** — Автоматизированная система управления технологическими процессами - совокупность математических методов, технических средств и организационных комплексов, воплощающих в себе рациональное управление сложными объектами или процессами в соответствии с заданной целью.

**Стандарт GSM** — Global System for Mobile Communications - глобальный цифровой стандарт для мобильной сотовой связи.

**SMS** — Short Messsage Service - короткие текстовые сообщения, получаемые или отправляемые непосредственно с мобильного телефона.

**GPRS** — General Packet Radio Service - пакетная радиосвязь общего пользования, надстройка над технологией мобильной связи GSM, осуществляющая пакетную передачу данных.

**Ethernet** — Стандарт организации локальных сетей (ЛВС), описанный в спецификациях IEEE 802.3. Использует полосу 10 или 100 Мбит/с и метод доступа к среде CSMA/CD.

**TCP/IP** — TCP/IP (Transmission Control Protocol/Internet Protocol - протокол управления передачей (протокол Internet).

Сокетное соединение — Сетевое соединение клиент-сервер через ТСР/IP.

**SIM-карта** — Модуль идентификации абонента (от англ. Subscriber Identification Module) идентификационный модуль абонента, применяемый в мобильной связи.

**ID-номер** — В контексте данного документа - идентификационный номер SIM-карты, (последние 9 цифр телефонного номера SIM-карты).

**ПО** — Программное обеспечение.

**ПК** — Персональный компьютер

**Терминатор** — (заглушка, согласующая нагрузка) - устройство, подключаемое к открытому концу линии передачи, для подавления отраженных сигналов.

**«Сухой контакт»** — Контакт, у которого отсутствует гальваническая связь с цепями электропитания и «землёй».

**OPC** — OPC (OLE for Process Control) - технология универсального механизма обмена данными в системах контроля и управления, обеспечивающая независимость потребителей от наличия или отсутствия драйверов или протоколов.

**ОРС-сервер** - программа, получающая данные от устройств и преобразующая их в формат ОРС.

**ОРС-клиент** - программа, принимающая данные от ОРС-серверов в формате ОРС и преобразующая их во внутренний формат устройства или системы.



# 1. НАЗНАЧЕНИЕ ИЗДЕЛИЯ

**DevLink**® –это техническое средство, предназначенное для выполнения различных функций в зависимости от технических характеристик аппаратной платформы и настройки встроенного программного обеспечения. Применятся в следующих изделиях:

- ▶ Промышленный модем DevLink®- M50
- ▶ Конверторы протоколов DevLink®- P200/300
- ▶ Энергоконцентратор (контроллер сбора данных) DevLink®- D500
- ▶ Многофункциональный промышленный контроллер DevLink®- C1000
- Устройство сбора и передачи данных DevLink®- S600

Назначение изделий, основные функции и области применения изложены в соответствующих руководствах на программное обеспечение.

#### 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

#### 2.1 Габаритные размеры

Габаритные размеры и вес компонентов **DevLink®** приведены в таблице 1.

Таблица 1 – Габаритные размеры и вес компонентов **DevLink®** 

| Компоненты DevLink®                                   | Размеры,<br>не более, мм | Вес,<br>не более, кг |
|-------------------------------------------------------|--------------------------|----------------------|
| Электронный блок                                      | 140x90x65                | 0,5                  |
| Примечание: в комплект поставки GSM-антенна не входит |                          |                      |

#### 2.2 Характеристики вычислительного ядра:

- Центральный процессор AT91SAM9G20, 400 МГц;
- Системное ОЗУ SDRAM PC 64/128 Мбайт
- Flash-память для хранения ПО, прикладных программ и трендов (архивных значений параметров) 128/256/512/1024 Мбайт
  - Астрономический таймер-календарь с питанием от резервной батареи;
  - Сторожевой таймер WatchDog.

#### 2.3 Параметры электропитания изделия:

- питание **DevLink**® может осуществляться от сети переменного тока 220 В частотой 50 Гц или от источника постоянного тока напряжением 24В (вариант выбирается при заказе).
- допустимый диапазон изменения напряжения 220В (170-260) В;
- допустимый диапазон изменения напряжения 24В (18-72)В;
- потребляемая мощность, не более 14 Вт.

# 2.4 Характеристики интерфейсов:

- Режимы обмена данными GPRS, Ethernet.
- Интерфейсы RS-232, RS-422, RS-485, USB-host, mini-USB, OneWire.
- Слот MicroSD
- Стандарт сотовой связи GSM 900/1800/1900.
- Максимальная длина линии связи с прибором:
  - ✓ при использовании интерфейса RS-232 до 10 м;
  - ✓ при использовании интерфейса RS-422 до 1000 м.
  - ✓ при использовании интерфейса RS-485 до 1000 м.
- Максимальное число входных датчиков типа «сухой контакт»: 6 шт.
- Максимальное число входных цифровых датчиков с интерфейсом OneWire: 20шт.

Более подробную информацию по интерфейсам **DevLink®** можно найти в п.4.1.1.



### 2.5 Устойчивость к воздействию внешних факторов

Рабочие условия применения:

- Температура окружающего воздуха от -40°C до +70°C;
- влажность окружающего воздуха от 5% до 85% при температуре не более +35°C без конденсации влаги (группа исполнения В3 по ГОСТ 12997);
- атмосферное давление от 84,0 до 107,7 кПа (группа исполнения Р1 по ГОСТ 12997).

### 2.6 Устойчивость к механическим воздействиям

По устойчивости к механическим воздействиям **DevLink**® соответствует виброустойчивому исполнению L1 по ГОСТ12997.

#### 2.7 Электромагнитная совместимость

- 2.1.1 **DevLink**<sup>®</sup> устойчив к электромагнитным помехам в соответствии с ГОСТ Р 51317.4.2-99, ГОСТ Р 51317.4.3-99, ГОСТ Р 51317.4.5-99, ГОСТ Р 51317.4.11-99.
- 2.1.2 **DevLink**® устойчив к воздействию внешних магнитных полей напряженностью до 400 А/м.
- 2.1.3 Уровень индустриальных помех в сети питания и радиопомех соответствует требованиям ГОСТ Р 51318.22-99.

#### 2.8 Безопасность

- 2.1.4 Степень защиты **DevLink**® от воздействия пыли и воды соответствует группе IP20 по ГОСТ 14254-96.
- 2.1.5 По способу защиты человека от поражения электрическим током **DevLink**® соответствуют классу 01 по ГОСТ 12.2.007.0.
- 2.1.6 Электрическая прочность изоляции цепей питания **DevLink**® выдерживает повышенное напряжение до 1,5 кВ в течение 1 мин при температуре (20±5) °C.
- 2.1.7 Электрическое сопротивление изоляции электрических цепей питания между собой и относительно корпуса **DevLink**® составляет:
  - не менее 20 МОм при температуре окружающего воздуха до 25°C;
  - не менее 5 МОм при температуре (25 40)°С.

#### 2.9 Надежность

Параметры надежности **DevLink**®:

- средняя наработка на отказ не менее 100 000 часов;
- средний срок службы не менее 15 лет.

# 3. СОСТАВ ИЗДЕЛИЯ

**DevLink**® представляет собой автономное устройство без органов управления, выполненное в корпусе из ABS-пластика с креплением на DIN-рейку. Модификации **DevLink**® описаны в таблице 2.

Таблица 2 – Модификации **DevLink**®

| Обозначени е модели | SDRAM | Ethernet | Inputs | USB | Питание    | RS232 | RS485 | One Wire | GSM | Mini-USB | MicroSD |
|---------------------|-------|----------|--------|-----|------------|-------|-------|----------|-----|----------|---------|
| M18-1               | 64Мб  | 1xEth    | 6xDI   | +   | 170-260VAC | 1(2)* | 4     | +        | +   | +        | +       |
| M18-2               | 64Мб  | 1xEth    | 6xDI   | +   | 18-72VDC   | 1(2)* | 4     | +        | +   | +        | +       |
| M18-3               | 128Мб | 1xEth    | 6xDI   | +   | 170-260VAC | 1(2)* | 4     | +        | +   | +        | +       |
| M18-4               | 128Мб | 1xEth    | 6xDI   | +   | 18-72VDC   | 1(2)* | 4     | +        | +   | +        | +       |

<sup>\*- 1</sup> порт с управлением потоком или 2 урезанных порта (настраивается программно).

#### ВНИМАНИЕ!

# SIM-карты оператора в состав DevLink® не входят.

Условное обозначение нестандартных модификаций **DevLink**® составляется по структурной схеме (см. рисунок 1):



#### Наличие устройств G - наличие GSM/GPRS модема U - наличие USB Номинальное напряжение питания I – наличие интерфейса I2C(OneWare) 4 - постоянное напряжение 24 В Заводской номер 0 – описание устройства отсутствует 2 - переменное напряжение 220 В Flash-память Модификация Системное ОЗУ 1 – 128 Мбайт M50 промышленный многопортовой 1 – 64 Мбайт 2 – 256 Мбайт GSM/GPRS модем D500 -2 – 128 Мбайт энергоконцентратор 3 – 512 Мбайт (контроллер сбора данных) 4 – 1024 Мбайт P200 -<u>1/O</u> конвертор протоколов D – 6 дискретных вх. P300 конвертор протоколов с дополнительными функциями С1000 - многофункциональный Количество интерфейсов связи промышленный контроллер - количество RS-232 S600 устройство сбора и передачи - количество RS-485 данных - количество Ethernet

Рисунок 1 – Условное обозначение нестандартных модификаций **DevLink** 

## Пример: DevLink-C1000-4-GU0-141-D-2-3-1100552

С1000 - многофункциональный промышленный контроллер

- 4 постоянное напряжение питания 24 В
- G GSM/GPRS модем
- U USB порт
- **0** без интерфейса I2C (OneWare)
- **1** 1 порт RS-232
- **4** 4 порта RS-485
- 1 -1 порт Ethernet
- **D** 6 дискретных входов
- 2 ОЗУ 128 Мбайт
- 3 Flash-память 512 Мбайт

1100552 - заводской номер (при заказе не указывается)

#### 4. УСТРОЙСТВО И РАБОТА

#### 4.1 Общие сведения

Электронный блок **DevLink®** помещен в корпус из ударопрочного пластика.

**DevLink®** представляет собой электронный модуль с резидентным программным обеспечением. На рисунке 2 показан внешний вид **DevLink®**.

На корпус **DevLink** нанесены наклейки:

- товарный знак предприятия-изготовителя;
- наименование изделия;
- порядковый номер по системе нумерации предприятия-изготовителя;

На лицевую панель контроллера выведены светодиоды:

- «INIT»;
- «STATUS»;
- «A»;
- «B».

Электронный блок **DevLink®** может состоять из одной платы (основной) или из двух плат (основной и дополнительной (плата GSM)).



Рисунок 2 – Внешний вид **DevLink**®

Электронный блок **DevLink**®B содержит следующие узлы:

- Разъем **«POWER»** с общей землей для подвода напряжения 220В переменного тока или 24В постоянного тока, импульсный источник вторичных напряжений с разделительным трансформатором;
- Микроконтроллер, память SDRAM, Flash-память, таймер-календарь с батареей резервного питания;



- Один сетевой интерфейс Ethernet с трансформаторной гальванической изоляцией;
- Один разъем интерфейса «USB-host» без гальванической изоляции;
- Один разъем интерфейса «mini-USB»;
- Один разъем «MicroSD»
- Интерфейс радиоканала **GSM** (опция) с разъемом для антенны и двумя SIMкартами пользователя;
- Порт 1-Wire (опция) для подключения цифровых датчиков с интерфейсом 1-Wire, без гальванической изоляции;
- Разъем «RS-232» интерфейса RS-232 с гальванической изоляцией;
- Разъем «I/O» ввода/вывода 6-ти аналоговых и дискретных сигналов с гальванической изоляцией;
- Разъем **«RS-485/RS-422»** 4-х интерфейсов RS-485 или 2-х RS-422 с гальванической изоляцией
- Сервисная кнопка «SET»;
- Сервисная кнопка «МОDE»
- Элементы индикации состояния DevLink® «INIT», «STATUS», «А», «В».

#### На дополнительной плате №1 расположены:

- Разъем «**DIO**» 6 дискретных входных/выходных каналов с гальванической изоляцией
- Разъем «**AIN**» 8 каналов ввода аналоговых сигналов с групповой гальванической изоляцией

На рисунке 3 представлен электронный блок **DevLink**<sup>®</sup> со снятой верхней крышкой, на рисунке 4 представлен электронный блок **DevLink**<sup>®</sup> с дополнительной платой №1 и снятой верхней крышкой.

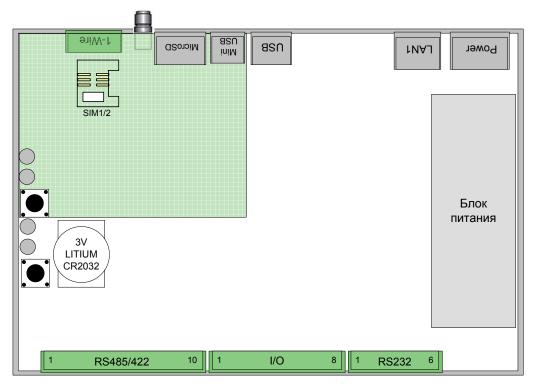



Рисунок 3 – Электронный блок **DevLink®** 

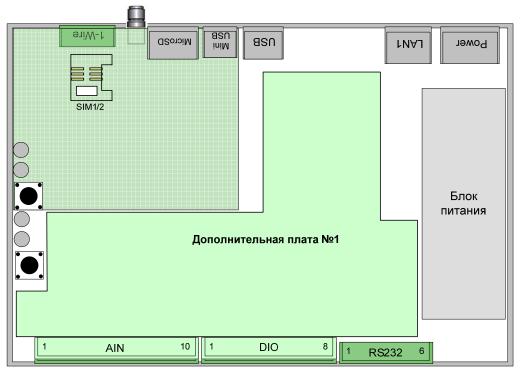



Рисунок 4 – Электронный блок **DevLink®** с дополнительной платой **№1** 

# 4.1.1 Назначение разъемов на плате DevLink®

# 4.1.1.1 Разъем питания «POWER»

Подключение напряжения питания к  $\mathbf{DevLink}^{\otimes}$  производится с помощью разъема « $\mathbf{POWER}$ ».  $\mathbf{DevLink}^{\otimes}$  имеет защиту от превышения входным напряжением допустимого предела.



Таблицы 3 и 4 содержат информацию о назначении контактов разъема питания **«POWER»** (см. рисунок 5) типа CWF-3-R-2.5 (вилка).



Рисунок 5 – Разъем типа CWF-3-R-2.5 (вилка).

Таблица 3 - Назначение контактов разъема питания «POWER» для напряжения ~220В

| Номер контакта | Обозначение контакта | Назначение контакта |
|----------------|----------------------|---------------------|
| 1              | N                    | Нейтраль            |
| 2              | GND                  | Общий               |
| 3              | L                    | Фаза                |

Таблица 4 - Назначение контактов разъема питания "POWER" для напряжения =24В

| Номер контакта | Обозначение контакта | Назначение контакта |
|----------------|----------------------|---------------------|
| 1              | -                    | -24B                |
| 2              | GND                  | Общий               |
| 3              | +                    | +24B                |

#### 4.1.1.2 Разъемы локальной сети «LAN1»

**DevLink®** имеет один интерфейс Ethernet 10/100Base-TX, удовлетворяющий спецификации IEEE 802.3. Контроллеры Ethernet автоматически переключают скорость 10 или 100 Мбит/с, определяют отключение от сети, обеспечивают выполнение сетевых алгоритмов, обнаружение коллизий и управление передачей данных.

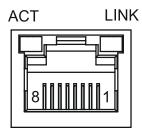



Рисунок 6 – Разъем Ethernet типа RJ-45

Таблица 5 содержит информацию о назначении контактов «LAN1» типа RJ-45.

Таблица 5- Назначение контактов разъемов «LAN1»

| Номер контакта | Обозначение контакта | Назначение контакта          |
|----------------|----------------------|------------------------------|
| 1              | RD+                  | Принимаемые данные, «плюс»   |
| 2              | RD-                  | Принимаемые данные, «минус»  |
| 3              | TD+                  | Передаваемые данные, «плюс»  |
| 4-5            | _                    | Не подключен                 |
| 6              | TD-                  | Передаваемые данные, «минус» |
| 7-8            | _                    | Не подключен                 |

Разъем Ethernet имеет светодиодную индикацию (см. рисунок 6). Светодиодный индикатор «LINK» включается, когда контроллер Ethernet обнаруживает на другом конце сетевого кабеля контроллер, поддерживающий скорость 100 Мбит/с. Этим устройством может являться концентратор (HUB), коммутатор (switch) или любой другой контроллер Ethernet, удовлетворяющий спецификации IEEE 802.3. Если контроллер Ethernet обнаруживает на другом конце сетевого кабеля контроллер, поддерживающий скорость 10 Мбит/с, то индикатор остается выключенным. В таблице 6 приведено описание функций светодиодов.

Таблица 6 - Описание функций светодиодов «АСТ» и «LINK».

| Состояние и режимы работы                                                                                                                                                               | АСТ (желт.)        | LINK (зелен.)          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|
| <ol> <li>Не подано питание</li> <li>Отказ контроллера Ethernet</li> <li>Сетевой кабель Ethernet не подключен</li> <li>Контроллер Ethernet на другом конце линии не обнаружен</li> </ol> | Не<br>используется | Выключен<br>(не горит) |
| На другом конце сетевого кабеля обнаружен контроллер<br>Ethernet, поддерживающий скорость 10 Мбит/с                                                                                     | Не<br>используется | Выключен<br>(горит)    |
| На другом конце сетевого кабеля обнаружен контроллер<br>Ethernet, поддерживающий скорость 100 Мбит/с                                                                                    | Не<br>используется | Выключен<br>(горит)    |
| Обмен данными по сети со скоростью 10 Мбит/с                                                                                                                                            | Не<br>используется | Выключен<br>(не горит) |
| Обмен данными по сети со скоростью 100 Мбит/с                                                                                                                                           | Не<br>используется | Включен<br>(мигает)    |

Краткие характеристики интерфейса:

- интерфейс Ethernet 10Base-TX и 100Base-TX использует один тип кабеля;
- рекомендуемый тип кабеля экранированная или неэкранированная витая пара проводников с волновым сопротивлением 100 Ом категории 5;
- длина кабеля для 100Base-TX до 140 м, для 10Base-TX до 185 м;
- автоматическое определение типа контроллера Ethernet, подключенного на другом конце устройства и автоматическое переключение скорости передачи по сети; автоматическое определение подключения и отключения сети.

### ВНИМАНИЕ!

По умолчанию DevLink настроен на работу в подсети 192.168.10.х и имеет IP адрес 192.168.10.248. Обязательна предварительная настройка (проверка), что ПК находится в той же подсети, а адрес 192.168.10.248 не занят другими устройствами.



### 4.1.1.3 Слоты SIM-1 и SIM-2 для установки двух SIM-карт

На плате электронного блока **DevLink**® предусмотрены два слота SIM-1 и SIM-2 для установки двух SIM-карт пользователя. SIM-карты не входят в комплект поставки прибора и должны приобретаться пользователем самостоятельно.

#### ВНИМАНИЕ!

При установке/съёме SIM-карты принимайте меры предосторожности для предотвращения электростатических разрядов:

- не прикасайтесь к контактам SIM-карты.
- перед выполнением процедуры коснитесь рукой клеммы заземления устройства DevLink.
- установку/съём SIM-карты производите при выключенном питании устройства DevLink.

#### 4.1.1.4 Разъемы интерфейса «USB»

**DevLink**<sup>®</sup> имеет последовательный интерфейс USB 2.0-host, позволяющий подключать к нему различные USB (slave) устройства, например, WEB видеокамеры, USB микрофоны, USB  $\rightarrow$  COM адаптеры и т.п. Интерфейс соответствует спецификации USB 2.0 и поддерживает протоколы Full speed и Low speed.

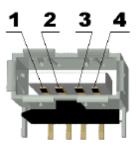



Рисунок 7 - Разъем USBA-1J

Таблица 7 содержит информацию о назначении контактов разъема USB типа USBA-1J (см. рисунок 7).

Таблица 7 - Назначение контактов разъема USBA-1J

| Номер контакта | Обозначение контакта | Назначение контакта     |
|----------------|----------------------|-------------------------|
| 1              | +5V (Out)            | Питание slave-устройств |
| 2              | HDMA                 | Данные «минус»          |
| 3              | HDPA                 | Данные «плюс»           |
| 4              | GND                  | Общий                   |

#### 4.1.1.5 Разьем Mini-USB

Mini - USB – сервисный порт для конфигурирования и настроек ПО (рисунок 8).



Рисунок 8 – Разъем mini-USB B female 5 pin

Таблица 8 содержит информацию о назначении контактов mini-USB.

Таблица 8 - Назначение контактов разъема mini-USB

| Номер контакта | Обозначение | Назначение контакта |
|----------------|-------------|---------------------|
| 1              | +5V         | Питание             |
| 2              | -Data       |                     |
| 3              | +Data       |                     |
| 4              | NC          |                     |
| 5              | GND         | Общий               |

#### 4.1.1.6 MicroSD слот

Предназначен для работы с MicroSD flash картами, для хранения большого объёма данных (журналов событий, архивов показаний опрашиваемых устройств и объектов и т.д.).

#### 4.1.1.7 Порт **«1-Wire»**

Разъем предназначен для подключения к контроллеру цифровых датчиков с интерфейсом OneWire®. Датчики не входят в комплект контроллера и поставляются по отдельному заказу. В <u>приложение 2</u> приведены конструктивные характеристики датчиков.

Таблица 9 содержит информацию о назначении контактов порта 1-Wire (см. рисунок 9) типа 15EDGRC-3,5-03P.



Рисунок 9 - Разъем типа 15EDGRC-3,5-03P (вилка).

Таблица 9 - Назначение контактов порта 1-Wire типа 15EDGRC-3,5-03P

| Номер<br>контакта | Обозначение | Обозначение контакта | Назначение контакта |
|-------------------|-------------|----------------------|---------------------|
| (опция)           | L           | +5V (Out)            | Питание             |
| 1                 | G           | GND                  | Общий               |



| 2 | Ī | SNS    | Шина 1-Wire® |
|---|---|--------|--------------|
| 3 | Р | +16.5V | Питание      |

#### 4.1.1.8 Разъем «ANTENNA»

Разъем «ANTENNA» типа SMA-GR предназначен для подключения к **DevLink®** антенны GSM. Модуль радиоканала подключен к порту процессора UART1 (таблица 10).

Таблица 10 - Соответствие UART номеру последовательного порта

| UART  | Интерфейс | Устройство Linux | Номер порта |
|-------|-----------|------------------|-------------|
| UART1 | GSM       | /dev/ttyS2       | 3           |

#### ВНИМАНИЕ!

При подключении/отключении антенны GSM принимайте меры предосторожности для предотвращения электростатических разрядов:

- не прикасайтесь к разъёмам антенны и устройства DevLink
- перед подключением антенны снимите с нее статическое электричество, коснувшись клеммы заземления устройства DevLink металлическим разъемом антенны
- перед выполнением процедуры коснитесь рукой клеммы заземления устройства DevLink
- подключение/отключение антенны производите при выключенном питании устройства DevLink

#### 4.1.1.9 Разъем «RS-485/RS-422»

На разъем "RS-485/RS-422" (см. рисунок 10) типа 15EDGRC-3,5-10P (вилка) может быть выведено до 4 последовательных асинхронных интерфейсов UART. Интерфейсы могут иметь физическую среду RS-485 или RS-422. Все интерфейсы снабжены гальванической изоляцией и поддерживают работу со стандартными скоростями обмена до 115200 бит/с.

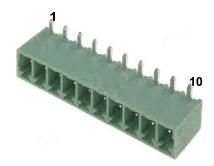



Рисунок 10 – Разъем типа 15EDGRC-3,5-10P (вилка).

Выбор порта процессора и желаемой физической среды интерфейса осуществляется программным конфигурированием. В таблице 11 приведены возможные варианты выбора различных комбинаций интерфейсов.

Таблица 11 – Выбор типов интерфейсов для разъема RS-485/RS-422

| Порт<br>процессора | Номер порта | Интерфейсы на<br>разъеме RS-<br>485/RS-422 |
|--------------------|-------------|--------------------------------------------|
| UART2              | 4           | RS-485                                     |
| UART3              | 5           | RS-485                                     |
| UART4              | 6           | RS-485                                     |
| UART5              | 7           | RS-485                                     |
| UART2              | 4           | Не используется                            |
| UART3              | 5           | RS-422                                     |
| UART4              | 6           | RS-485                                     |
| UART5              | 7           | RS-485                                     |
| UART2              | 4           | RS-485                                     |
| UART3              | 5           | RS-485                                     |
| UART4              | 6           | Не используется                            |
| UART5              | 7           | RS-422                                     |
| UART2              | 4           | Не используется                            |
| UART3              | 5           | RS-422                                     |
| UART4              | 6           | Не используется                            |
| UART5              | 7           | RS-422                                     |

Таблица 12 содержит информацию о назначении контактов разъема RS-485/RS-422.

Таблица 12 - Назначение контактов разъема «RS-485/RS-422» типа 15EDGRC-3,5-10P

| Номер    | Обозначение | UART2  | UA     | RT3    | UART4  | UAI    | RT5    |
|----------|-------------|--------|--------|--------|--------|--------|--------|
| контакта | контакта    | RS-485 | RS-485 | RS-422 | RS-485 | RS-422 | RS-485 |
| 1        | 1A          | _      | _      | _      | _      | Tx+    | DATA+  |
| 2        | 1B          | _      | _      | _      | _      | Tx-    | DATA-  |
| 3        | 2A          | _      | _      | _      | DATA+  | Rx+    | _      |
| 4        | 2B          | _      | _      |        | DATA-  | Rx-    | _      |
| 5        | 3A          | _      | DATA+  | Tx+    | _      |        | _      |
| 6        | 3B          | _      | DATA-  | Tx-    | _      |        | _      |
| 7        | 4A          | DATA+  | _      | Rx+    | _      |        | _      |
| 8        | 4B          | DATA-  | _      | Rx-    | _      | _      | _      |
| 9        | GI          | GND    | _      | GND    | _      | GND    | GND    |
| 10       | PI          | +13V   |        | +13V   |        | +13V   | +13V   |

Ниже приведены некоторые рекомендации по организации сетей на основе интерфейсов RS-485 для промышленного применения.

Сигналы подключаются с помощью экранированного кабеля с двумя или четырьмя витыми парами в общем экране. Рекомендуется использовать кабель типа КСПиЭВ (КСПиЭП) 2x2x0,4 или КСПиЭВ (КСПиЭП) 4x2x0,4 (НПП «Спецкабель»). Экран кабеля подключается к клемме заземления только на одном конце линии связи, обычно со стороны **DevLink**® внутри монтажного шкафа.

Топология сети для подключения устройств на RS-485 – магистраль. На концах линии связи необходимо установить согласующие резисторы 0,125 Вт номиналом 120 Ом.



Рекомендуемая длина кабеля для скорости передачи 115200 бит/с – не более 500 м, для скорости 9600 бит/с – не более 1200 м. Допустимые ответвления от магистрали для подключения устройств – не более 1,5 м. Количество узлов в одном сегменте – не более 32.

Последовательный интерфейс RS-485/RS-422 имеет универсальное применение. Наличие гальванической изоляции позволяет подключать к интерфейсу устройства, расположенные на большом расстоянии, и работать в условиях сильных электромагнитных помех. Интерфейс снабжен защитой от высоковольтных импульсных помех на линиях связи

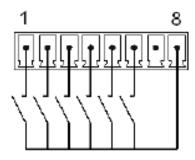
# 4.1.1.10 Разъем «I/O»

Разъем «I/O» **DevLink** (см. рисунок 11) типа 15EDGRC-3,5-08P предназначен для подключения 6 дискретных датчиков типа «сухой контакт» от управляемого объекта. В приложении 1 приведен пример подключения датчиков к **DevLink**. Все каналы снабжены защитой от высоковольтных импульсных помех на линиях связи, гальваническая изоляция отсутствует.

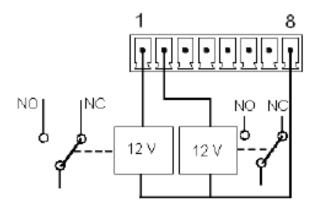


Рисунок 11 – Разъем типа 15EDGRC-3,5-08P (вилка).

Таблица 13 содержит информацию о назначении контактов разъема I/O типа 15EDGRC-3,5-08P.


| Таблица 13 - Назначение контактов разъема « | « <b>I/O</b> » типа і | 15EDGRC-3.5-08P |
|---------------------------------------------|-----------------------|-----------------|
|---------------------------------------------|-----------------------|-----------------|

| Номер    | Обозначение | Назначение                         | Сигнал        | Сигнал         |
|----------|-------------|------------------------------------|---------------|----------------|
| контакта | контакта    | контакта                           | (опция-Входы) | (опция-Выходы) |
| 1        | 1           | Канал ввода 1                      | IN1           | OUT1           |
| 2        | 2           | Канал ввода 2                      | IN2           | OUT2           |
| 3        | 3           | Канал ввода 3                      | IN3           | OUT3           |
| 4        | 4           | Канал ввода 4                      | IN4           | OUT4           |
| 5        | 5           | Канал ввода 5                      | IN5           | OUT5           |
| 6        | 6           | Канал ввода 6                      | IN6           | OUT6           |
| 7        | NI          | GND (Общий)                        | GND           | GND            |
| 8        | SI          | +13V (питание внешних<br>датчиков) | +13V          | +13V           |


#### Примечание:

- Опция «Входы» и «Выходы» могут комбинироваться например, 2 выхода и 4 входа
- Опция «Выходы» может выполнена в 2-х версиях с общим плюсом и общей землей

Пример подключения к цифровым входам (опция с общим плюсом):



Пример подключения реле к цифровым выходам:



# 4.1.1.11 Разъем интерфейса «RS-232»

Порт для подключения устройств по интерфейсу «RS-232» (рисунок 11)

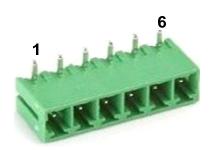



Рисунок 11 – Разъем типа 15EDGRC-3,5-06P (вилка)

Таблица 14 содержит информацию о назначении контактов разъема «RS-232».

Таблица 14 - Назначение контактов разъема «RS-232» типа 15EDGRC-3,5-06P

| Номер<br>контакта | Обозначение контакта | Сигнал       | Назначение контакта |        | Дополнительная функция |          | ая  |
|-------------------|----------------------|--------------|---------------------|--------|------------------------|----------|-----|
| 1                 | D↑                   | RXDD(UARTDB) | Принимаемые         | данные | CTS0                   | (сб      | рос |
| ļ                 |                      | KADD(OAKTDB) | «Вход»              |        | передач                | и. «Вход | ı») |
|                   |                      |              | Передаваемые д      | данные | RTS0 (                 | запрос   | на  |
| 2                 | D↓                   | TXDD(UARTDB) | «Выход»             |        | передач                | y.       |     |
|                   |                      |              |                     |        | «Выход»                | ·)       |     |
| 3                 | 0↑                   | RXD0(UARTD0) | Принимаемые         | данные |                        |          |     |



| Номер<br>контакта | Обозначение контакта | Сигнал       | Назначение контакта         | Дополнительная<br>функция |
|-------------------|----------------------|--------------|-----------------------------|---------------------------|
|                   |                      |              | «Вход»                      |                           |
| 4                 | 0↓                   | TXD0(UARTD0) | Передаваемые данные «Выход» |                           |
| 5                 | GI                   | GND          | Контакт заземления          |                           |
| 6                 | LI                   | +5V          | Питание внешних приборов    |                           |

На разъем **«RS-232»** типа 15EDGRC-3,5-08P (вилка) выведен последовательный асинхронный интерфейс UART, имеющий физическую среду RS-232 и поддерживающий работу со стандартными скоростями обмена до 115200 бит/с. Интерфейс снабжен защитой от высоковольтных импульсных помех на линиях связи и гальванической изоляцией. Путем программного конфигурирования разъем может выполнять либо функцию интерфейса RS-232 с сигналами управления потоком данных от порта процессора UART0, либо двух усеченных интерфейсов без сигналов управления от портов процессора UARTDB1, UARTDB2.

#### 4.1.1.12 Кнопка «SET»

Сервисная кнопка «SET» используется для запуска контроллера в режиме программирования. Более подробно о функционале смотрите в инструкции «Система реального времени контроллера DevLink. Руководство Пользователя»

#### 4.1.1.13 Кнопка «МОDE»

#### Зарезервированный элемент (пока не используется).

#### 4.1.1.14 Элементы индикации «INIT», «STATUS», «А», «В»

Светодиодные индикаторы с переменным цветом свечения. Служат для отображения самодиагностики устройства и режимов его работы.

#### 4.1.2 Назначение разъемов на дополнительной плате №1

#### 4.1.2.1 Разъем "DIO" на дополнительной плате

Разъем DIO предназначен для подключения 6 датчиков типа «сухой контакт» от управляемого объекта, либо 6 управляющих реле. Все каналы гальванически изолированы, каждый канал может быть независимо от других каналов использован как дискретный вход либо дискретный выход. При использовании канала в качестве дискретного входа, возможно, его использование в качестве счетчика импульсов с максимальной частотой до 1 кГц. Работа с сигналами DIO будет описана в разделе «Работа с платой»

Назначение контактов порта DIO приведено в таблице 15:

Таблица 15 – Назначение контактов порта DIO – дискретные входы/выходы

| Номер контакта  | Обозначение | Назначение контакта                               |
|-----------------|-------------|---------------------------------------------------|
| (слева направо) | контакта    |                                                   |
| 1               | GND         | Общий провод                                      |
| 2               | +24B        | «+» внешнего источника питания дискретных выходов |
| 3               | DIN/DOUT6   | Дискретный вход/выход 6                           |
| 4               | DIN/DOUT5   | Дискретный вход/выход 5                           |
| 5               | DIN/DOUT4   | Дискретный вход/выход 4                           |
| 6               | DIN/DOUT3   | Дискретный вход/выход 3                           |
| 7               | DIN/DOUT2   | Дискретный вход/выход 2                           |
| 8               | DIN/DOUT1   | Дискретный вход/выход 1                           |

Технические характеристики дискретных входов/выходов приведены в таблице 16

Таблица 16 – Технические характеристики дискретных входов/выходов

| Характеристика                                                  | Значение    |
|-----------------------------------------------------------------|-------------|
| Количество дискретных входов                                    | 6           |
| Количество дискретных выходов                                   | 6           |
| Гальваническая изоляция каналов от контроллера, не менее, Вольт | 1500        |
| Напряжение питания дискретных каналов, Вольт                    | От 12 до 35 |
| Мощность, потребляемая от источника питания, не более, ВА       | 2           |
| Максимальная частота входных импульсов, не менее, Гц            | 1000        |
| Максимальный ток транзисторного ключа при использовании         | 100         |
| канала в качестве выхода, мА, не более                          |             |
| Число разрядов счетчика событий в каждом канале                 | 16          |

#### 4.1.2.2 Разъем "AIN" на дополнительной плате

Разъем AIN предназначен для подключения 8 аналоговых датчиков с токовым выходом 4-20 мА. Максимальная приведенная погрешность измерения для каждого их каналов составляет 0,1%. Работа с сигналами AIN описана в разделе 4.1.2.3 «Работа с платой» Назначение контактов порта AIN приведено в таблице 17:

Таблица 17 – Назначение контактов порта AIN – аналоговые входы.

| Номер контакта  | Обозначение | Назначение контакта |
|-----------------|-------------|---------------------|
| (слева направо) | контакта    |                     |
| 1               | GND         | Общий провод        |
| 2               | GND         | Общий провод        |
| 3               | AIN8        | Аналоговый вход 8   |
| 4               | AIN7        | Аналоговый вход 7   |
| 5               | AIN6        | Аналоговый вход 6   |
| 6               | AIN5        | Аналоговый вход 5   |
| 7               | AIN4        | Аналоговый вход 4   |
| 8               | AIN3        | Аналоговый вход 3   |
| 9               | AIN2        | Аналоговый вход 2   |
| 10              | AIN1        | Аналоговый вход 1   |



#### 4.1.2.3 Работа с платой

С программной точки зрения аналоговые входы и дискретные входы/выходы объединены в виртуальный модуль ввода/вывода, работающий по MODBUS-протоколу. Обмен данными с этим модулем ведется по порту **UART3** (устройство Linux /dev/ttyS4, порт 5) со следующими параметрами связи:

Скорость обмена – 115200 бод;

Адрес устройства MODBUS - 1;

Информационных бит – 8;

Стоп-бит – 2;

Бит четности – не используется.

Регистровая карта виртуального устройства приведена в разделе «Регистровая модель платы расширения DevLink». Настройка устройства осуществляется через Web-интерфейс контроллера.

#### 4.1.2.3.1 Работа с дискретными входными каналами

В плате используется схема включения дискретных входных сигналов «с общей землей» (Рисунок 12). По отдельному заказу возможна поставка модификации «с общим плюсом»

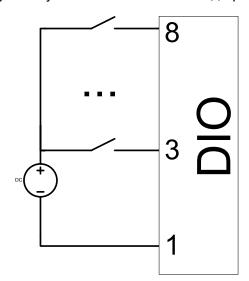



Рисунок 12 – Схема подключения дискретных входов

Значения сигналов, поступающих на дискретные входные каналы, можно узнать, прочитав либо значения соответствующих дискретных вводов протокола ModBus, либо – его соответствующего регистра (см. раздел «Регистровая модель платы расширения DevLink»).

#### ВНИМАНИЕ!

Так как каналы дискретного входа и дискретного выхода используют одни и те же контакты разъема, для корректной работы дискретного входа необходимо, чтобы значение флага ModBus, соответствующего дискретному выходу, было равно нулю. Значение по умолчанию – нуль.

#### 4.1.2.3.2 Работа с дискретными выходными каналами

Схема подключения нагрузки к дискретным выходным каналам приведена на рисунке 13.

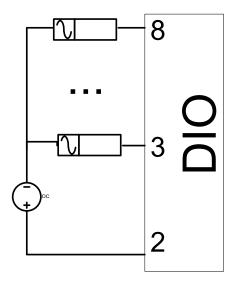



Рисунок 13 – Схема подключения дискретных выходов

#### 4.1.2.3.3 Работа с аналоговыми входными каналами

Измерительные датчики с выходным аналоговым сигналом 4-20мА подключаются по схеме, приведенной на рисунке 14:

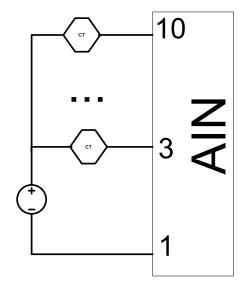



Рисунок 14 – Схема подключения аналоговых сигналов 4-20мА

#### 4.1.2.3.4 Калибровка аналоговых входных каналов

Для повышения точности преобразования аналоговых сигналов плата предусматривает возможность калибровки входных каналов. Калибровка выполняется индивидуально для каждого канала, путем записи соответствующих значений в 32-ой регистр виртуального MODBUS-устройства.



Например, для калибровки «нуля» первого канала необходимо записать число 1, а для калибровки «максимума» седьмого канала — число 17. Полный список значений, соответствующих тому или иному режиму калибровки, приведен в разделе «Регистровая модель платы расширения DevLink»). Алгоритм калибровки канала приведен на рисунке 15.

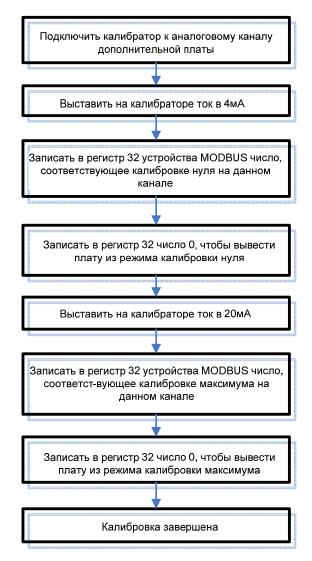



Рисунок 15 – Алгоритм калибровки аналогового канала

#### 4.1.2.3.5 Типовая настройка контроллера

При предпродажной подготовке контроллера, в случае заказа комплектации с данной платой ввода/вывода, осуществляется её первичная настройка, настройка базы данных контроллера и драйвера ModBus RTU-клиент, которые приведены в таблице 18.

Таблица 18 – типовая настройка контроллера

| Физический параметр | Переменная БД | Параметры привязки MODBUS |
|---------------------|---------------|---------------------------|
| Дискретный выход 1  | ДВ1           | Флаг 101                  |
| Дискретный выход 2  | ДВ2           | Флаг 102                  |
| Дискретный выход 3  | ДВ3           | Флаг 103                  |

| Физический параметр  | Переменная БД | Параметры привязки MODBUS |
|----------------------|---------------|---------------------------|
| Дискретный выход 4   | ДВ4           | Флаг 104                  |
| Дискретный выход 5   | ДВ5           | Флаг 105                  |
| Дискретный выход 6   | ДВ6           | Флаг 106                  |
| Дискретный вход 1    | ВД2           | Дискретный ввод 201       |
| Дискретный вход 2    | ВД3           | Дискретный ввод 202       |
| Дискретный вход 3    | ВД4           | Дискретный ввод 203       |
| Дискретный вход 4    | ВД5           | Дискретный ввод 204       |
| Дискретный вход 5    | ВД6           | Дискретный ввод 205       |
| Дискретный вход 6    | ДВ7           | Дискретный ввод 206       |
| Счетчик импульсов 1  | BA9           | Регистр 08                |
| Счетчик импульсов 2  | BA10          | Регистр 09                |
| Счетчик импульсов 3  | BA11          | Регистр 10                |
| Счетчик импульсов 4  | BA12          | Регистр 11                |
| Счетчик импульсов 5  | BA13          | Регистр 12                |
| Счетчик импульсов 6  | BA14          | Регистр 13                |
| Аналоговый вход 1    | BA1           | Регистры 14, 15           |
| Аналоговый вход 2    | BA2           | Регистры 16, 17           |
| Аналоговый вход 3    | BA3           | Регистры 18, 19           |
| Аналоговый вход 4    | BA4           | Регистры 20, 21           |
| Аналоговый вход 5    | BA5           | Регистры 22, 23           |
| Аналоговый вход 6    | BA6           | Регистры 24, 25           |
| Аналоговый вход 7    | BA7           | Регистры 26, 27           |
| Аналоговый вход 8    | BA8           | Регистры 28, 29           |
| Параметры калибровки | PB1           | Регистр 32                |

# 4.1.2.3.6 Регистровая модель платы расширения DevLink:

**Регистр 01** — адрес устройства. Адрес устройства содержится в младшем байте регистра., старший байт всегда равен 0. Допустимые функции — 03, 04. Адрес устройства является неизменным, и всегда равен 01

**Регистры 02..06** – зарезервированы для будущего развития, и в настоящее время не используются.

**Регистр 07** – версия программного обеспечения виртуального MODBUS-устройства, два байта. Допустимые функции – 03, 04.

**Регистр 08** — показания счетчика импульсов первого дискретного входа. Допустимые функции — 03, 04, 06, 16. Счетчик может принимать значения от 0 до 65535, показания счетчика импульсов сбрасываются при пропадании питания контроллера, и могут быть изменены при помощи команд записи.

**Регистр 09** – показания счетчика импульсов со второго дискретного входа. Допустимые функции – 03, 04, 06, 16.

**Регистр 10** – показания счетчика импульсов с третьего дискретного входа. Допустимые функции – 03, 04, 06, 16.

**Регистр 11** – показания счетчика импульсов с четвертого дискретного входа. Допустимые функции – 03, 04, 06, 16.



**Регистр 12** – показания счетчика импульсов с пятого дискретного входа. Допустимые функции – 03, 04, 06, 16.

**Регистр 13** – показания счетчика импульсов с шестого дискретного входа. Допустимые функции – 03, 04, 06, 16.

**Регистры 14 и 15** –показания первого аналогового канала в формате float. Допустимые функции – 03, 04. Результат выдается в миллиамперах, и может принимать значения от 4 до 20 миллиампер.

**Регистр 16 и 17** – показания второго аналогового канала в формате float. Допустимые функции – 03, 04.

**Регистр 18 и 19** – показания третьего аналогового канала в формате float. Допустимые функции – 03, 04.

**Регистр 20 и 21** — показания четвертого аналогового канала в формате float. Допустимые функции — 03, 04.

**Регистр 22 и 23** — показания пятого аналогового канала в формате float. Допустимые функции — 03, 04.

**Регистр 24 и 25** — показания шестого аналогового канала в формате float. Допустимые функции — 03, 04.

**Регистр 26 и 27** — показания седьмого аналогового канала в формате float. Допустимые функции — 03, 04.

**Регистр 28 и 29** — показания восьмого аналогового канала в формате float. Допустимые функции — 03, 04.

**Регистр 30** – данные о состоянии цифровых входов. Данные содержатся в младшем байте регистра, в битах с 0 по 5 (входы с 1 по 6 соответственно). Допустимые функции – 03, 04, для чтения информации о цифровых входах лучше использовать операции работы с дискретными вводами (см. далее)

**Регистр 31** – данные о состоянии цифровых выходов. Данные содержатся в младшем байте регистра, в битах с 0 по 5 (выходы с 1 по 6 соответственно). Допустимые функции – 03, 04, 06, 16. Для работы с цифровыми выходами лучше использовать функции работы с флагами (см. далее).

**Регистр 32** – режим работы модуля аналоговых входов. Режим задается младшим байтом регистра, старший игнорируется. Допустимые функции – 03, 04, 06, 16. Возможные режимы работы:

00 – режим измерения.

01 – режим калибровки нуля по первому каналу.

02 – режим калибровки нуля по второму каналу.

03 – режим калибровки нуля по третьему каналу.

#### РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

- 04 режим калибровки нуля по четвертому каналу.
- 05 режим калибровки нуля по пятому каналу.
- 06 режим калибровки нуля по шестому каналу.
- 07 режим калибровки нуля по седьмому каналу.
- 08 режим калибровки нуля по восьмому каналу.
- 11 режим калибровки максимума по первому каналу.
- 12 режим калибровки максимума по второму каналу.
- 13 режим калибровки максимума по третьему каналу.
- 14 режим калибровки максимума по четвертому каналу.
- 15 режим калибровки максимума по пятому каналу.
- 16 режим калибровки максимума по шестому каналу.
- 17 режим калибровки максимума по седьмому каналу.
- 18 режим калибровки максимума по восьмому каналу.

#### 4.1.2.3.7 Дискретные вводы (входы)

Дискретный ввод 201 – канал дискретного входа 1 платы ввода/вывода

Дискретный ввод 202 – канал дискретного входа 2 платы ввода/вывода

Дискретный ввод 203 – канал дискретного входа 3 платы ввода/вывода

Дискретный ввод 204 – канал дискретного входа 4 платы ввода/вывода

Дискретный ввод 205 – канал дискретного входа 5 платы ввода/вывода

Дискретный ввод 206 – канал дискретного входа 6 платы ввода/вывода

#### 4.1.2.3.8 Флаги (дискретные выходы)

- Флаг 101 дискретный выход 1 платы ввода/вывода
- Флаг 102 дискретный выход 2 платы ввода/вывода
- Флаг 103 дискретный выход 3 платы ввода/вывода
- Флаг 104 дискретный выход 4 платы ввода/вывода
- Флаг 105 дискретный выход 5 платы ввода/вывода
- Флаг 106 дискретный выход 6 платы ввода/вывода

#### 4.2 Режимы работы

- 4.4.1 Режимы работы **DevLink®** отображаются индикацией светодиодов «INIT», «STATUS», «A», «В».
- 4.4.2 Описание работы встраиваемого программного обеспечения и программирование прикладных задач изложено в эксплуатационной документации на программное обеспечение.



# 5. ВЗАИМОДЕЙСТВИЕ С ДРУГИМИ ИЗДЕЛИЯМИ

- 5.1 **DevLink**<sup>®</sup>, взаимодействует с приборами по интерфейсам RS-232, RS-485, RS-422, USB-host, mini –USB, Ethernet и MicroSD слот. Через интерфейс RS-232 и USB-host могут подключаться отдельные приборы, а через RS-485 и RS-422 как отдельные приборы, так и их сети. В <u>приложении 1</u> приведены примеры подключения к **DevLink**<sup>®</sup> приборов с разными интерфейсами.
- 5.2 При подключении сети приборов через интерфейсы RS-485 и RS-422 следует соблюдать следующие правила:
  - **DevLink®** 'должен быть крайним звеном в цепи приборов, объединенных в сеть RS-485 или RS-422 (не должен включаться в разрыв цепи RS-485 или RS-422, см. рисунок 16);
  - В сети приборов с выходом RS-485 или RS-422 крайние приборы в цепи должны подключаться к линии связи с использованием согласующего резистора (терминатора). В случае, когда **DevLink**® подключается к сети приборов, уже находящихся в эксплуатации, перед подключением к крайнему прибору необходимо отключить согласующий резистор, если он был подключен.

На рисунке 16 представлен пример подключения к контроллеру **DevLink**® сети приборов по интерфейсу RS-485.

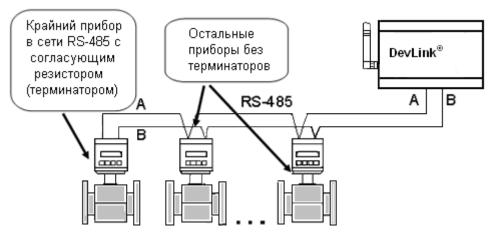



Рисунок 16 – Пример подключения к контроллеру DevLink® сети RS-485

#### 6. СРЕДСТВА ИЗМЕРЕНИЯ И ПРИНАДЛЕЖНОСТИ

6.1 **DevLink<sup>®</sup>**, не требует использования средств измерения, инструмента и принадлежностей в течение всего срока эксплуатации.

#### 7. МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 7.1 Маркировка **DevLink<sup>®</sup>**, должна производиться с применением шрифта по ГОСТ 26.020.
- 7.2 Маркировка должна сохраняться в течение всего срока службы **DevLink**®,
- 7.3 На корпусе **DevLink** крепятся наклейки:
  - товарный знак предприятия-изготовителя;
  - наименование изделия;
  - порядковый номер по системе нумерации предприятия-изготовителя;
- 7.4 Специального пломбирования изделия предприятием-изготовителем не требуется, поскольку защита данных от несанкционированного доступа обеспечивается на конструктивном уровне. Пломбирование может осуществляться эксплуатирующей организацией после подключения **DevLink**®,
- 7.5 Обязательным условием принятия рекламаций предприятием-изготовителем в случае отказа изделия, является отсутствие механических повреждений на корпусе и платах изделия.

#### 8. УПАКОВКА

- 8.1 Упаковка изделия и эксплуатационной документации удовлетворяет требованиям, предъявляемым ГОСТ 9181-74.
- 8.2 В качестве упаковочной тары применяется потребительская тара предприятия поставщика.
- 8.3 Упаковка изделия должна проводиться в закрытых вентилируемых помещениях при температуре от плюс 15°C до плюс 40°C и относительной влажности не более 80 % при отсутствии агрессивных примесей в окружающей среде.



#### 9. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

#### 9.1 Эксплуатационные ограничения

Условия эксплуатации **DevLink®** должны находиться в строгом соответствии с требованиями, изложенными в настоящем РЭ.

# 9.2 Подготовка к использованию

Изделие полностью готово к использованию по назначению после завершения монтажных и пусконаладочных работ.

Монтажные и пусконаладочные работы могут производиться представителями предприятияизготовителя, уполномоченными сервисными центрами и представителями Заказчика, прошедшими курс обучения и сертификацию на предприятии-изготовителе.

#### 9.3 Распаковка

При получении **DevLink**® необходимо проверить сохранность тары.

После транспортирования изделия в условиях отрицательных температур распаковка должна производиться только после выдержки в течение не менее 12 часов в теплом помещении.

После вскрытия тары необходимо освободить элементы **DevLink**® от упаковочных материалов и протереть.

#### 9.4 Объем и последовательность внешнего осмотра изделия

При внешнем осмотре изделия следует проверить:

- комплектность изделия в соответствии с паспортом;
- отсутствие видимых механических повреждений;
- чистоту гнезд, разъемов и клемм;
- состояние соединительных проводов, кабелей;
- состояния и четкость маркировок.

#### 9.5 Монтаж

- 9.5.1 Монтаж **DevLink**<sup>®</sup> должен проводиться в строгом соответствии с требованиями настоящего РЭ и утвержденного проекта. Монтаж **DevLink**<sup>®</sup> осуществляется персоналом, ознакомленным с настоящим РЭ.
- 9.5.2 Установку **DevLink**® необходимо проводить в следующей последовательности:

- Установить электронный блок в месте, предусмотренном проектной документацией, в шкафу.
- Если проектом предусмотрено использование выносной антенны, то вынести ее за пределы шкафа и разместить в зоне покрытия связи оператора, SIM-карта которого установлена в электронном блоке **DevLink**®.
- Подключить опрашиваемый прибор (сеть приборов), датчики и исполнительные механизмы, предусмотренные проектной документацией, согласно схемам электрических подключений (см. приложение 1).
- 9.5.3 Подключение электронного блока **DevLink**® к датчикам типа «сухой контакт», прибора (сети приборов) по интерфейсам RS-485, RS-232 и питающей электрической сети должно выполняться кабелем с площадью сечения не менее 0,22 мм<sup>2</sup>.
- 9.5.4 Подключение **DevLink**® к электрической сети ~ 220В должно выполняться только через автоматический выключатель с током защиты, составляющим 6 А.

#### 9.6 Подготовка к работе

- 9.6.1 После окончания монтажа **DevLink**® перед началом работы необходимо:
  - Проверить правильность монтажа электрических цепей в соответствии со схемами электрических подключений, приведенных на рисунках приложения 1.
  - Если используются внешние датчики, приборы и исполнительные механизмы необходимо убедиться в правильности их подключения.
  - Если прибор не сконфигурирован, необходимо произвести его конфигурирование и настройку в порядке, изложенном в руководстве по программированию прибора. Если все сделано правильно, то прибор готов принимать и передавать данные между опрашиваемыми приборами и клиентами.
  - Подключить питание и дождаться когда светодиоды «INIT» и «STATUS» начнут гореть зелёным цветом (операционная система загружена).
  - Если используется GSM модуль:
    - При наличии выносной антенны можно поместить её в зоне покрытия сотовой связи оператора, SIM-карта которого установлена в прибор.

#### 9.7 Демонтаж

- 9.7.1 Демонтаж **DevLink** следует проводить в следующей последовательности:
  - отключить напряжение питания **DevLink**® и отсоединить кабель питания от разъёма «POWER»;



- отсоединить кабели связи электронного блока с опрашиваемыми приборами (сетью приборов) и другим оборудованием;
- отсоединить кабели датчиков и приборов от разъёма I/O;
- отсоединить от разъёма «ANTENNA» кабель выносной антенны;
- отсоединить кабель связи цифровых датчиков OneWire от разъёма «Ethernet»
- снять электронный блок;
- 9.7.2 Демонтаж опрашиваемого прибора (сети приборов) необходимо проводить в порядке, изложенном в эксплуатационной документации на данный тип приборов.

#### 9.8 Использование изделия

- 9.8.1 К работе допускаются изделия **DevLink**<sup>®</sup> не имеющие механических повреждений и подготовленные к работе.
- 9.8.2 Перечень и характеристики основных режимов работы изделия изложены в руководстве по программированию прибора.

#### 9.9 Меры безопасности

- 9.9.1 Эксплуатация изделия должна проводиться лицами, ознакомленными с принципом работы, конструкцией изделия и настоящим РЭ.
- 9.9.2 В ходе эксплуатации изделия персоналу надлежит исполнять рекомендации, изложенные в «Правилах техники безопасности при эксплуатации электроустановок потребителей».

#### 10. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

#### 10.1 Техническое обслуживание

- 10.1.1 Техническое обслуживание **DevLink**® должно проводиться для обеспечения его нормального функционирования в течение всего срока эксплуатации.
- 10.1.2 Работа по техническому обслуживанию включает в себя:
  - периодический осмотр;
  - удаление (в случае необходимости) следов пыли и влаги.
- 10.1.3 Периодический осмотр  $\mathbf{DevLink}^{\otimes}$  должен регулярно производиться с целью контроля за:
  - соблюдением условий эксплуатации;
  - отсутствием внешних повреждений;
  - надежностью механических и электрических соединений;
  - работоспособностью.
- 10.1.4 Периодичность контроля зависит от условий эксплуатации, но не должна быть реже одного раза в месяц.
- 10.1.5 Следы пыли и влаги с поверхности электронного блока (блока питания и антенны) следует удалять мягкой сухой фланелью.
- 10.1.6 Техническое обслуживание опрашиваемого прибора (сети приборов) должно проводиться в полном соответствии с их эксплуатационной документацией.

#### 10.2 Вскрытие корпуса

При вскрытии корпуса допускается использовать отвёртку с плоским жалом. Данную операцию допускается выполнять только при отключенном напряжении питания.

Порядок вскрытия корпуса:

- жалом отвёртки зацепить нижний край верхней крышки корпуса в районе одной из двух защёлок, расположенных в торцах корпуса, как изображено на рисунке 17;
- немного отожмите верхнюю крышку корпуса, надавив на рукоятку отвёртки в сторону корпуса, чтобы крышка могла преодолеть зацеп защёлки;
- освободите крышку корпуса от зацепа защёлки;



• повторите выше описанные процедуры со второй защёлкой;

#### ВНИМАНИЕ!

При вскрытии корпуса ни в коем случае не допускайте:

- деформации/отгибания зацепов торцевых защёлок;
- использования отверстий в торцах верхней крышки корпуса (данные отверстия предназначены только для наблюдения за положением зацепов защёлок).

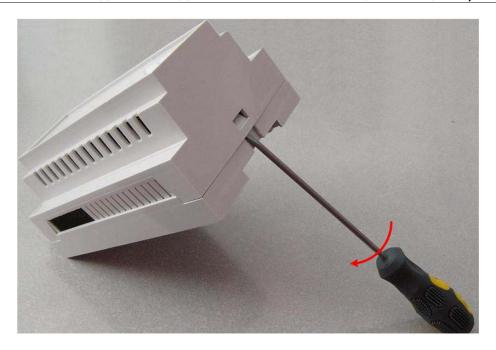



Рисунок 17 – Вскрытие корпуса

#### 10.2 Меры безопасности

10.2.1 В ходе эксплуатации **DevLink**® персоналу надлежит исполнять рекомендации, изложенные в «Правилах техники безопасности при эксплуатации электроустановок потребителей» и в «Правилах технической эксплуатации электроустановок потребителей».

10.2.2 Для тушения пожара, при возгорании прибора разрешается использовать только углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-10 и др.

10.2.3 Источником опасности при монтаже и эксплуатации **DevLink®** является переменное напряжение с действующим значением до 260 В.

10.2.4 Безопасность эксплуатации **DevLink**® обеспечивается:

- прочностью корпусов опрашиваемых приборов (сети приборов), подключенных датчиков и исполнительных механизмов;
- изоляцией электрических цепей, соединяющих электронный блок с блоком питания, с выносной антенной, опрашиваемыми приборами (сетью приборов), подключенными датчиками и исполнительными механизмами.

# РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

10.2.5 При эксплуатации **DevLink**® необходимо соблюдать общие требования безопасности:

- При обнаружении внешних повреждений электронного блока или сетевой проводки следует отключить **DevLink**® до устранения причин неисправности специалистом по ремонту.
- Запрещается установка и эксплуатация **DevLink**® в пожароопасных и взрывоопасных зонах всех классов.
- При установке и монтаже **DevLink®** необходимо соблюдать требования ГОСТ 12.3.003, ГОСТ 12.3.032, ГОСТ 12.3.036, а также «Правил пожарной безопасности».

# 10.3 Техническое освидетельствование

**DevLink®** подвергается обязательным приемо-сдаточным испытаниям при выпуске из производства

.



## 11. ТЕКУЩИЙ РЕМОНТ

Текущий ремонт изделия производится по истечению гарантийного срока эксплуатации в случае возникновения неисправности. Ремонт электронного блока производится при отключении его от сети питания. При выполнении ремонта следует руководствоваться «Правилами техники безопасности при эксплуатации электроустановок».

#### 12. ХРАНЕНИЕ

При длительном хранении на складе потребителя (до двух лет) **DevLink**<sup>®</sup> должны находиться на складах в упаковке завода - изготовителя на стеллажах при температуре окружающего воздуха от плюс  $5^{\circ}$ С до плюс  $40^{\circ}$ С, относительной влажности воздуха до  $80^{\circ}$  при температуре  $25^{\circ}$ С. Расстояние между стенами, полом склада и изделиями должно быть не менее 0,5 м.

Хранить **DevLink**® без упаковки следует при температуре окружающего воздуха от плюс 10°C до плюс 35°C и относительной влажности воздуха 80% при температуре 25°C. В помещении для хранения не должно быть пыли, паров кислот и щелочей, вызывающих коррозию.

Хранение **DevLink**® должно производиться с соблюдением действующих норм пожарной безопасности.

## 13. ТРАНСПОРТИРОВАНИЕ

Транспортирование **DevLink**® упакованных в тару предприятия - изготовителя, допускается железнодорожным и (или) автомобильным транспортом при температуре окружающего воздуха от минус 40°C до плюс 50°C и относительной влажности до 98% при температуре 35°C.

При транспортировании должна быть предусмотрена защита прибора от попадания атмосферных осадков и пыли.

Условия транспортирования в части воздействия механических факторов - С по ГОСТ 23216, в части воздействия климатических факторов - Б по ГОСТ15150.

#### 14. УТИЛИЗАЦИЯ

Изделие не содержит в своём составе опасных или ядовитых веществ, способных нанести вред здоровью человека или окружающей среде и не представляет опасности для жизни, здоровья людей и окружающей среды по окончании срока службы. В этой связи утилизация изделия может производиться по правилам утилизации общепромышленных отходов.

#### 15. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 15.1 Изготовитель гарантирует соответствие **DevLink**® требованиям технических условий при соблюдении правил транспортирования, хранения, монтажа и эксплуатации.
- 15.2 Гарантийный срок эксплуатации 12 месяцев со дня ввода **DevLink**® в эксплуатацию, но не позднее 18 месяцев со дня поступления изделия потребителю.
- 15.3 Гарантийный срок хранения 6 месяцев с момента изготовления изделия.



# ПРИЛОЖЕНИЕ 1 (информационное). Схемы подключения DevLink®

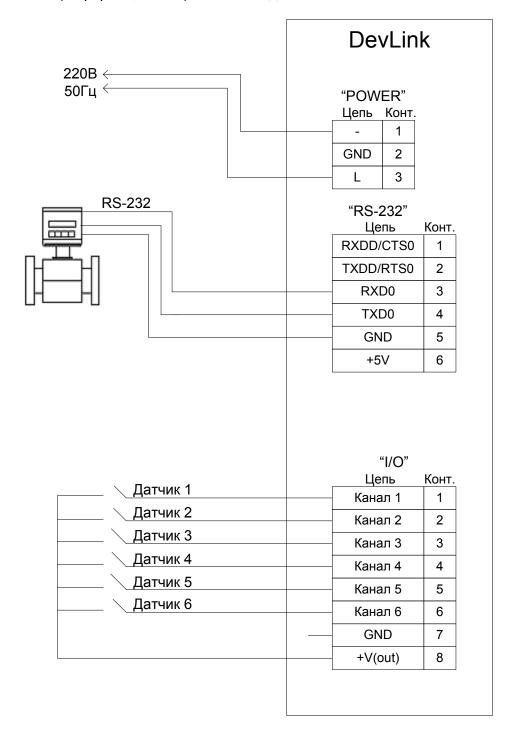



Рисунок П 1.1 - Пример подключения к **DevLink®** прибора с интерфейсом RS-232 и датчиков типа «сухой контакт»

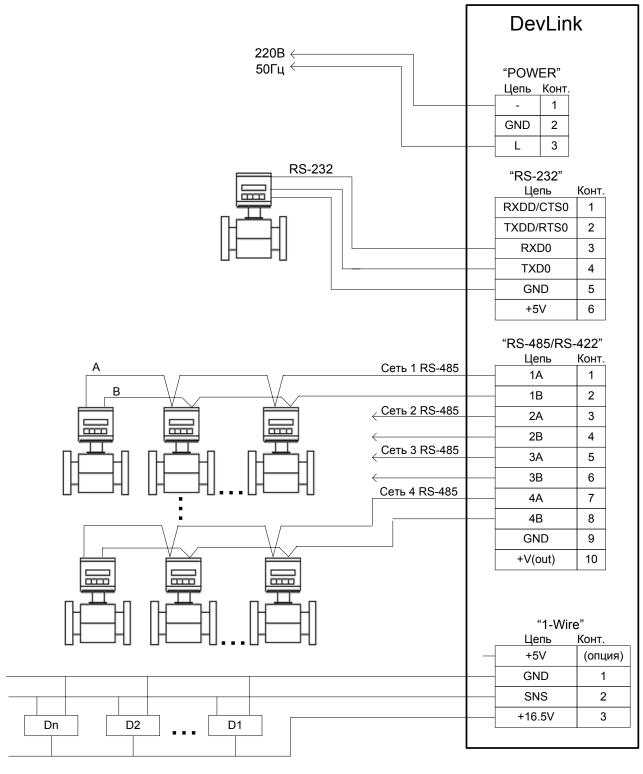



Рисунок П 1.2 - Пример подключения к **DevLink**® приборов с интерфейсами RS-232, RS485, OneWire



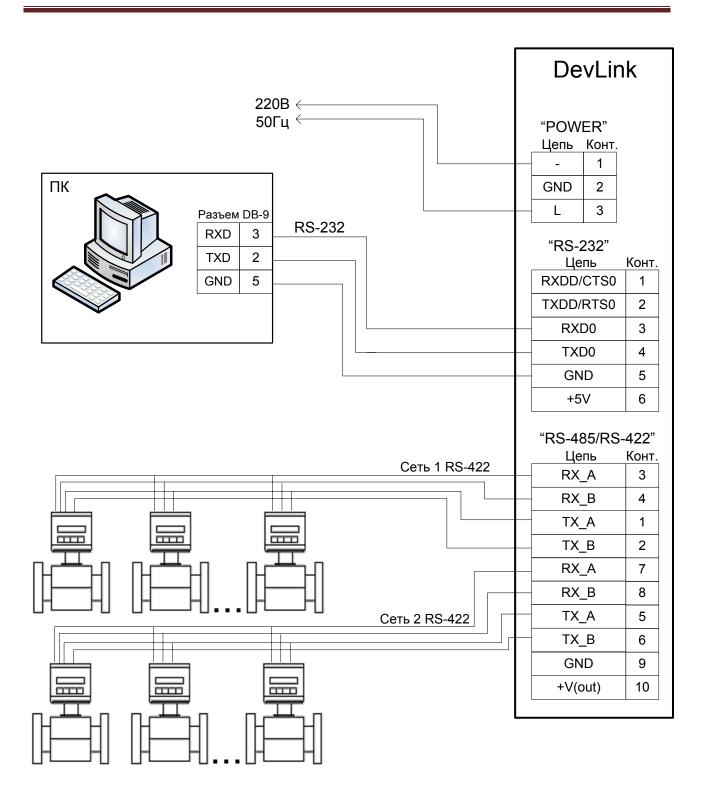



Рисунок П 1.3 - Пример подключения к **DevLink**® ПК и приборов с интерфейсом RS-422

#### ПРИЛОЖЕНИЕ 2 (справочное). Датчики с интерфейсом OneWire®

Все датчики выполнены в универсальном корпусе. В рамках настоящего РЭ внешнее реле также рассматривается, как датчик. Датчик весит 20 грамм. Датчики поставляются в комплекте с кабелями RJ11-RJ11 длиной 1 м. Каждый датчик состоит из следующих частей:

- 1. Основание;
- 2. Верхняя крышка;
- 3. Декоративная планка;
- 4. Печатная плата с установленными на нее электронными компонентами, включая микросхему интерфейса OneWire®, и разъемом RJ11.

На основании имеются 2 отверстия для закрепления винтами М3. Датчики подключаются к разъему **«Ethernet»** электронного блока.

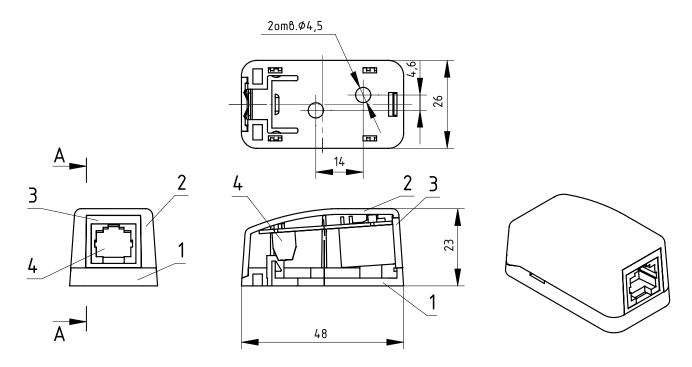



Рисунок П 2.1 - Внешний вид датчиков (относится ко всем датчикам)



Таблица П2.1 – Код заказа и функциональное назначение датчиков

| Код заказа | Функциональное назначение датчика                              |  |  |  |  |  |
|------------|----------------------------------------------------------------|--|--|--|--|--|
| SST1       | Датчик температуры, совмещенный с цифровым входом              |  |  |  |  |  |
| SSH1       | Датчик температуры и влажности                                 |  |  |  |  |  |
| SSS1       | Датчик дыма (интерфейс 1x4/20mA) и температуры                 |  |  |  |  |  |
| SSL1       | Датчик освещенности и температуры                              |  |  |  |  |  |
| SSAV1      | Датчик напряжения 220ACV                                       |  |  |  |  |  |
| SSDV1      | Датчик напряжения 24DCV                                        |  |  |  |  |  |
| SSR1       | Бистабильное/моностабильное/импульсное реле 1xRelay (Latching) |  |  |  |  |  |
| SSO1       | Сдвоенный ключ для низковольтной техники (OpenDrain)           |  |  |  |  |  |

# ПРИЛОЖЕНИЕ 3 (рекомендуемое). Схема упаковки

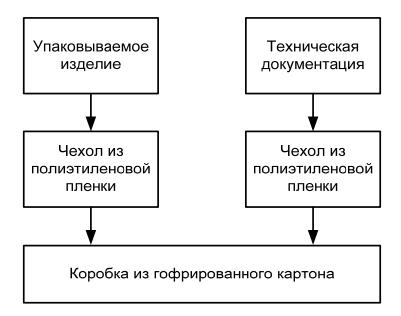



Рисунок П3.1 – Схема упаковки



# ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

| Изм. | Номера листов (страниц) |                |       |                        | Всего                        |             | Входящий                    |       |      |
|------|-------------------------|----------------|-------|------------------------|------------------------------|-------------|-----------------------------|-------|------|
|      | Измен<br>енных          | Замен<br>ённых | Новых | Аннули<br>рованн<br>ых | листов<br>(стр.) в<br>докум. | №<br>докум. | № сопр.<br>докум. и<br>дата | Подп. | Дата |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |
|      |                         |                |       |                        |                              |             |                             |       |      |